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Α. PUBLICATIONS IN REFEREED JOURNALS 

1. Sarris D, Stoforos N. G., Mallouchos A., Kookos I. K., Koutinas A. A., Aggelis G., Papanikolaou S. 

(2017). Production of added-value metabolites by Yarrowia lipolytica growing in olive mill 

wastewater-based media under aseptic and non-aseptic conditions. Eng Life Sci (In Press; DOI: 

10.1002/elsc.201600225). 

Yarrowia lipolytica ACA-YC 5033 was grown on glucose-based media in which high amounts of 

olive mill wastewaters (OMWs) had been added. Besides shake-flask aseptic cultures, trials were also 

performed in previously pasteurized media while batch bioreactor experiments were also done. 

Significant decolorization ( 58%) and remarkable removal of phenolic compounds ( 51% w/w) 

occurred, with the latter being amongst the highest ones reported in the international literature, as far 

as yeasts were concerned during their growth on phenol-containing media. In nitrogen-limited flask 

fermentations the microorganism produced maximum citric acid quantity  19.0 g/L [simultaneous 

yield of citric acid produced glucose consumed (YCit/Glc) 0.74 g/g]. Dry cell weight (DCW) values 

decreased at high phenol-containing media, but, on the other hand, the addition of OMWs induced 

reserve lipid accumulation.Maximumcitric acid concentration achieved ( 52.0 g/L; YCit/Glc 0.64 

g/g) occurred in OMW-based high sugar content media (initial glucose added at  80.0 g/L). The 

bioprocess was successfully simulated by a modified logistic growth equation. A satisfactory fitting 

on the experimental data occurred while the optimized parameter values were found to be similar to 

those experimentally measured. Finally, a non-aseptic (previously pasteurized) trial was performed 

and its comparison with the equivalent aseptic experiment revealed no significant differences. 

Yarrowia lipolytica hence can be considered as a satisfactory candidate for simultaneous OMWs 

bioremediation and the production of added-value compounds useful for the food industry. 

2. Dourou Μ., Kancelista Α., Juszczyk, P., Sarris D., Bellou S., Triantaphyllidou I-E, Rywinska A., 

Papanikolaou S., Aggelis G (2016). Bioconversion of olive mill wastewater into high-added value 

products. J Cleaner Prod, 169, 957-969. 

 

Olive mill wastewater (OMW) contains a variety of assimilable carbon sources, and therefore can be 

regarded as fermentation medium for the production of added-value products, rather than as a waste 

material. In this study, the biotechnological valorization of OMW (enriched with other low cost 

carbon sources) for lipid, mannitol, citric acid and ethanol production was conducted using selected 

yeast strains. L. starkeyi and Y. lipolytica (strains A6 and S11), showed a noteworthy ability to 

produce lipids cultivated on OMW based media (i.e. 24.5%, 14.9% and 16.5%, respectively). Oleic 

(Δ9C18:1) acid was the major fatty acid in lipids produced by the above mentioned strains, 

suggesting a selective uptake of Δ9C18:1 from OMWs lipids. A6 strain produced also mannitol in 

considerable amounts (i.e. 13.4 g/L) during fermentation on OMW enriched with glycerol. Y. 

lipolytica LGAM S (7) produced high quantities of citric acid (i.e. 30.3 g/L), cultivated in flasks on 

OMW enriched with glycerol. C. tropicalis LFMB 16 produced 21.9 g/L of ethanol cultivated in 

bioreactor on OMW enriched with glucose, while S. cerevisiae MAK-1 produced 31.3 g/L of ethanol 

cultivated under non-aseptic conditions in bioreactor on OMW based media. Remarkable phenolic 

removal was performed by Y. lipolytica (strains A6 and S11), C. tropicalis and S. cerevisiae under 

non-aseptic conditions, while color removal was performed by C. tropicalis and S. cerevisiae. It is 

concluded that L. starkeyi, Y. lipolytica, C. tropicalis and S. cerevisiae could be used utilized for the 

production of high-value metabolites with biotechnological interest using OMW based media, in 

parallel with color and phenolic removal, providing another option in the OMW management. 
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3. Sarris, D., Papanikolaou, S. (2015). Biotechnological production of ethanol: Biochemistry, 

processes and technologies. Eng Life Sci, 16 (4), 307-329. 

 

The majority of the environmental problems arise from the use of conventional energy sources. The 

liability of such problems along with the reduction of fossil energy resources has led to the global 

need for alternative renewable energy sources. Using renewable biofuels as energy sources is of 

remarkable and continuously growing importance. Producing bioethanol through conversion of waste 

and residual biomass can be a viable and important perspective. In the first part of this review, 

general concepts, approaches and considerations concerning the utilization of the most important 

liquid biofuels, namely biodiesel and bioethanol, are presented. Unlike biodiesel (specifically first 

generation biodiesel), the production of bioethanol is exclusively based on the utilization of microbial 

technology and fermentation engineering. In the second part of this review, the biochemistry of 

ethanol production, with regards to the use of hexoses, pentoses or glycerol as carbon sources, is 

presented and critically discussed. Differences in the glycolytic pathways between the major ethanol-

producing strains (Saccharomyces cerevisiae and Zymomonas mobilis) are presented. Regulation 

between respiration and fermentation in ethanol-producing yeasts, viz. effects “Pasteur”, “Crabtree”, 

“Kluyver” and “Custers”, is discussed. Xylose and glycerol catabolism related with bioethanol 

production is also depicted and commented. The technology of the fermentation is presented along 

with a detailed illustration of the substrates used in the process and in pretreatment of lignocellulosic 

biomass, and the various fermentation configurations employed (separate hydrolysis and 

fermentation, simultaneous saccharification and fermentation, simultaneous saccharification and co-

fermentation, and consolidated bioprocessing). Finally, the production of bioethanol under non-

aseptic conditions is presented and discussed. 

 

4. Sarris, D., Matsakas, L., Aggelis, G., Koutinas, A. A., Papanikolaou, S. (2014). Aerated vs non-

aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces 

cerevisiae under non-aseptic conditions. Ind Crops Prod, 56, 83-93. 

(First report in international literature for the biotechnological treatment and valorization of blends of 

molasses and olive mill waste-waters) 

 

The ability of Saccharomyces cerevisiae MAK-1 to convert blends of molasses and olive mill 

wastewaters (OMWs) into compounds of higher added-value under aerated and non-aerated 

conditions was studied in the current investigation. Noticeable decolorization (up to 60%) and 

moderate removal of phenolic compounds (up to 28%, w/w) was observed. Under aerated conditions 

in non-sterile shake-flask cultures, cultures in molasses-based media in which supplementation with 

OMWs had been performed did not significantly decrease ethanol and biomass production in 

comparison with control experiments (cultures in which no OMWs had been added). Ethanol of 34.3 

g L−1 (with simultaneous yield of ethanol produced per sugar consumed of ~0.40 g g−1) and biomass 

of 7.3 g L−1 (with yield of ~0.08 g g−1) was observed. Under similar aerated bioreactor cultures, 

biomass production (up to 5.7 g L−1 with yield of biomass produced per sugar consumed of ~0.07 g 

g−1) decreased while, on the other hand, ethanol biosynthesis was notably enhanced (up to 41.8 g L−1 

with yield of ethanol produced of ~0.49 g g−1 – value very close to the maximum theoretical one). 

Comparing non-sterile aerated with non-aerated bioreactor experiments, biomass production showed 

some slight increase and ethanol production slightly increased in the latter case. It is concluded that 

S. cerevisiae MAK-1 is a microorganism of importance amenable for simultaneous OMWs 

remediation and production of added-value compounds. 
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5. Bellou, S., Makri, A., Sarris, D., Michos, K., Rentoumi, P., Celik, A., Papanikolaou, S., Aggelis, G. 

(2014). The olive mill wastewater as substrate for single cell oil production by Zygomycetes. J 

Biotechnol, 170, 50-59. 

 

The conversion of olive mill wastewater (OMW) into high added value lipids containing 

polyunsaturated fatty acids (PUFA), in parallel with a significant phenolic removal by selected 

strains of Zygomycetes, is reported here for the first time. The growth of Mortierella isabellina, 

Mortierella ramanniana, Cunninghamella echinulata, Mucor sp., Thamnidium elegans and 

Zygorhynchus moelleri on solidified media was not significantly affected by the presence of OMW 

used in the growth medium up to 50% (v/v). Kinetic parameter values and conversion yields, 

estimated using a mathematical model which was fitted on the experimental data originated from 

submerged cultures, shows the ability of some Zygomycetes (i.e. T. elegans and Z. moelleri) to grow 

on OMW and accumulate storage material, i.e. lipids rich in PUFA, and these findings open new 

perspectives in OMW management and valorization. In liquid media containing OMW as sole carbon 

source, T. elegans and Z. moelleri produced 4.4 and 3.5 g/L cell mass in surface (SC) and submerged 

(SMC) cultures, respectively, containing around 60% (w/w) of lipids. Oleic and palmitic acids were 

the predominant fatty acids. Gamma-linolenic acid was found in high percentages (up to 17.7%, w/w) 

in the lipid of Z. moelleri, in SMC with OMW as sole carbon source, while PUFA biosynthesis was 

not favored in SC. 

 

6. Sarris, D., Giannakis, M., Philippoussis, A., Komaitis, M., Koutinas, A. A., Papanikolaou, S. (2013). 

Conversions of olive mill wastewater-based media by Saccharomyces cerevisiae through sterile and 

non-sterile bioprocesses. J Chem Technol Biotechnol, 88, 958-969. 

 

Olive mill wastewaters (OMWs) are an important residue and several methods have been proposed 

for their treatment. Remarkable decolorization (~63%) and phenol removal (~34% w/w) from OMW 

was achieved. In glucose-based flask sterile cultures, enrichment with OMWs increased ethanol and 

biomass production compared with cultures without OMWs added. Flask sterile and un-sterilized 

cultures demonstrated similar kinetic results. Batch-bioreactor trials performed showed higher 

ethanol and lower biomass quantities compared with the respective shake-flask experiments, while 

cultures used under un-sterilized conditions revealed equivalent results to the sterile ones. In non-

sterile bioreactor cultures, OMWs addition enhanced biomass production in comparison with culture 

with no OMWs added, whereas ethanol biosynthesis was not affected. The maximum ethanol 

quantity achieved was 52 g L−1 (conversion yield per sugar consumed of 0.46 g g−1) in a batch 

bioreactor non-sterilized trial with OMW–glucose enriched medium used as substrate, that presented 

initial reducing sugars concentration at ~115 g L−1. Fatty acid analysis of cellular lipids demonstrated 

that in OMW-based media, cellular lipids containing increased concentrations of oleic and linoleic 

acid were produced in comparison with cultures with no OMWs added. S. cerevisiae simultaneously 

produced bio-ethanol and biomass and detoxified OMWs, under non-sterile conditions. 

 

7. Sarris, D., Galiotou-Panayotou, M., Koutinas, A. A., Komaitis, M., Papanikolaou, S. (2011). Citric 

acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill 

wastewater-based media. J Chem Technol Biotechnol, 86, 1439-1448. 

 

Olivemill wastewaters (OMWs) are an important residue and several physico-chemical and/or 

biotechnological methods have been proposed for their treatment. The ability of three Yarrowia 

lipolytica strains to grow on and convert glucose-enriched OMWs into added-value compounds in 

carbon- and nitrogen-limited shake-flask cultures was assessed. Remarkable decolorization (up to 

63%) and non-negligible removal of phenolic compounds (up to 34%, w/w) occurred. In nitrogen-

limited cultures, the accumulation of cellular lipids was favored by OMW addition into the medium. 

In contrast, although remarkable quantities of citric acid (Cit) were produced in control experiments 

(cultures without OMW addition), in which Cit up to 18.9 g L−1 was produced with yield of Cit 

synthesized per sugar consumed ~0.73 g g−1), adaptation of cultures to media supplemented with 
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OMWs reduced the final Cit quantity and conversion yield values achieved. In OMW-based media, 

the highest concentration of citric acid produced was 18.1 g L−1, with conversion yield ~0.51 g g−1. In 

carbon-limited cultures, despite the presence of inhibitory compounds in the medium (e.g. phenols), 

biomass production was enhanced with the addition of OMWs. The highest biomass concentration 

achieved was 12.7 g L−1, with biomass conversion yield per sugar consumed ~0.45 g g−1. Fatty acid 

analysis of cellular lipid produced demonstrated that adaptation of all strains in OMW-based media 

favored the synthesis of cellular lipids that contained increased concentrations of cellular oleic acid. 

The Y. lipolytica strains tested can be regarded as possible candidates for simultaneous OMWs 

remediation and production of added-value compounds. 

 

8. André, A., Diamantopoulou, P., Philippoussis, A., Sarris, D., Komaitis, M., Papanikolaou, S. (2010). 

Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by 

higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crops Prod, 31(2), 407-416. 

 

Waste bio-diesel derived glycerol was used as the sole carbon source by higher fungi; two Lentinula 

edodes strains were flask cultured in carbon-limited conditions and displayed satisfactory growth in 

media presenting weak agitation, pH 4.0 and temperature 25◦C. Maximum biomass of 5.2 g/l was 

produced. Mycelia were synthesized, containing around 0.1 g of fat per g of biomass, with linoleic 

acid (Δ9,12C18:2) being the principal cellular fatty acid produced. Two Aspergillus niger strains were 

grown in nitrogen-limited flask cultures with constant nitrogen and two different initial glycerol 

concentrations into the medium. In 250-ml flask cultures, large-sized pellets were developed, in 

contrast with the trials performed in 2-l flasks. Nitrogen limitation led to oxalic acid secretion and 

intra-cellular lipid accumulation; in any case, sequential production of lipid and oxalic acid was 

observed. Initially, nitrogen limitation led to lipid accumulation. Thereafter, accumulated lipid was 

re-consumed and oxalic acid, in significant quantities, was secreted into the medium. In large-sized 

pellets, higher quantities of intra-cellular total lipid and lower quantities of oxalic acid were produced 

and vice versa. Maximum quantities of oxalic acid up to 20.5–21.5 g/l and lipid up to 3.1–3.5 g/l 

(corresponding to 0.41–0.57 g of fat per g of biomass) were produced. Lipid was mainly composed of 

oleic (Δ9C18:1) and linoleic (Δ9,12C18:2) acids. 

 

9. André, A., Chatzifragkou, A., Diamantopoulou, P., Sarris, D., Philippoussis, A., Galiotou-

Panayotou, M., Komaitis, M., Papanikolaou, S. (2009). Biotechnological conversions of bio-diesel-

derived crude glycerol by Yarrowia lipolytica strains. Eng Life Sci, 9(6), 468-478. 

 

In the present report, crude glycerol, waste discharged from bio-diesel production, was used as 

carbon substrate for three natural Yarrowia lipolytica strains (LFMB 19, LFMB 20 and ACA-YC 

5033) during growth in nitrogen-limited submerged shake-flask experiments. In media with initial 

glycerol concentration of 30 g/L, all strains presented satisfactory microbial growth and complete 

glycerol uptake. Although culture conditions favored the secretion of citric acid (and potentially the 

accumulation of storage lipid), for the strains LFMB 19 and LFMB 20, polyol mannitol was the 

principal metabolic product synthesized (maximum quantity 6.0 g/L, yield 0.20–0.26 g per g of 

glycerol consumed). The above strains produced small quantities of lipids and citric acid. In contrast, 

Y. lipolytica ACA-YC 5033 produced simultaneously higher quantities of lipid and citric acid and 

was further grown on crude glycerol in nitrogen-limited experiments, with constant nitrogen and 

increasing glycerol concentrations (70–120 g/L). Citric acid and lipid concentrations increased with 

increment of glycerol; maximum total citric acid 50.1 g/L was produced (yield 0.44 g per g of 

glycerol) while simultaneously 2.0 g/L of fat were accumulated inside the cells (0.31 g of lipid per g 

of dry weight). Cellular lipids were mainly composed of neutral fraction, the concentration of which 

substantially increased with time. Moreover, in any case, the phospholipid fraction was more 

unsaturated compared with total and neutral lipids, while at the early growth step, microbial lipid was 

more rich in saturated fatty acids (e.g. C16:0 and C18:0) compared with the stationary phase. 
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10. Sarris, D., Kotseridis, Y., Linga, M., Galiotou-Panayotou, M., Papanikolaou, S. (2009). Enhanced 

ethanol production, volatile compound biosynthesis and fungicide removal during growth of a newly 

isolated Saccharomyces cerevisiae strain on enriched pasteurized grape musts. Eng Life Sci, 9(1), 29-

37. 

 

The kinetic behavior of a newly isolated Saccharomyces cerevisiae strain, grown on pasteurized 

grape musts enriched with industrial sugars, was studied after the addition of various concentrations 

[0.0 (reference), 0.4 and 2.4 mg/L] of the fungicide quinoxyfen to the medium. Batch-flask cultures 

were carried out. Significant quantities of biomass (10.0±0.8 g/L) were produced regardless of 

quinoxyfen addition to the medium; therefore, the addition of the fungicide did not seriously inhibit 

biomass production. Ethanol was synthesized in very high quantities in all trials (highest 

concentrations 106.4–119.2 g/L). A slight decrease of ethanol production in terms of both absolute 

value and conversion yield of ethanol produced per sugar consumed was, however, observed when 

the quinoxyfen concentration was increased. The addition of quinoxyfen led to significantly lower 

ethylic ester levels, which also pertains to the acetates analyzed in this study. Fusel alcohol synthesis 

seemed to be activated when 0.4 mg/L quinoxyfen was added, but at 2.4 mg/L of added fungicide, no 

statistically significant differences were observed compared with the control trial. Volatile acid levels 

did not present a uniform trend in relation with the added fungicide. Finally, the fermentation was 

accompanied by a significant reduction of the fungicide concentration (79–82 wt% fungicide 

removal). 

 

Β. PRESENTATIONS IN CONFERENCES  

 

1. Sarris, D., Diamantopoulou, P., Papanikolaou, S., Philippousis, A. Valorization of low-cost, 

sugar-rich substrates by edible ascomycetes for the production of mycelial mass and unsaturated 

fatty acids. 6th Greek lipid forum, 2015, p. 59. 

2. Sarris, D., Georgousis, M., Psarianos, D., Gardeli, Ch., Koutinas, A.A., Aggelis, G., 

Papanikolaou, S. Selection of yeast strains capable to assimilate xylose for the production of 

microbial lipids. 6th Greek lipid forum, 2015, p. 60. 

3. Sarris, D., Koutinas, A.A., Mallouchos, A., Aggelis, G., Papanikolaou, S. Production of biomass 

and cellular lipids during growth of yeasts on substrates based on blends of xylose and raw 

glycerol. 6th Greek lipid forum, 2015, p. 61. 

4. Sarris, D., Matsakas, L., Koutinas, A.A., Komaitis, M., Papanikolaou, S. Bio-ethanol production 

during growth of Saccharomyces cerevisiae MAK 1 on mixtures of molasses and olive mill 

wastewaters under non-sterile conditions. 5th Greek lipid forum, 2009, page 51. 

5. Sarris, D., Giannakis, M., Galiotou-Panayotou, M., Komaitis, M., Papanikolaou, S. Bioethanol 

and biomass production during growth of Saccharomyces cerevisiae MAK 1 on Olive oil Mill 

Wastewater-based media. Greek lipid forum, 2009. 

6. Σαρρής, Δ., Γιαννάκης, Μ., Γαλιώτου-Παναγιώτου, Μ., Κωμαΐτης, Μ., Παπανικολάου Σ. 

Βιοτεχνολογική παραγωγή αιθανόλης κατά την αύξηση του στελέχους Saccharomyces 

cerevisiae MAK-1 σε υποστρώματα με βάση τα υγρά απόβλητα ελαιουργίας. 1ο Συνέδριο 

Γεωπονικής Βιοτεχνολογίας, 2009, σ. 47. 

7. Σαρρής, Δ., Γαλιώτου-Παναγιώτου, Μ., Κωμαΐτης, Μ., Παπανικολάου Σ. Βιοτεχνολογική 

παραγωγή κιτρικού οξέος και μικροβιακού λίπους κατά την επεξεργασία υποστρωμάτων με βάση 

τα υγρά απόβλητα ελαιουργίας από το στέλεχος Yarrowia lipolytica ACA-YC 5033. 1ο Συνέδριο 

Γεωπονικής Βιοτεχνολογίας, 2009, σ. 38. 

8. Sarris, D., Galiotou-Panayotou, M., Komaitis, M., Papanikolaou, S. Biomass and citric acid 

production by Yarrowia lipolytica cultivated on olive oil mill wastewater-based media. 6th Euro 

Fed Lipid, 2008, page 481. 

9. André, A., Diamantopoulou, P., Sarris, D., Galiotou-Panayotou, M., Philippoussis, A., 

Papanikolaou, S. Bioconversion of crude glucerol, waste discharged after bio-diesel production 

process, into biomass, oxalic acid and microbial lipid. 6th Euro Fed Lipid, 2008, page 121. 
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10. Sarris, D., Kotseridis, Y., Papanikolaou, S., Galiotou-Panayotou, M., Komaitis, M. Production of 

bio-ethanol and removal of fungicide during growth of a newly isolated Saccharomyces 

cerevisiae strain on enriched grape musts. 4ο Διεθνές Συνέδριο Βιοτεχνολογίας (IGBF 4), 

2007. With distinction as the best conference publication. 

11. Sarris, D., Kotseridis, Y., Rodis, P., Galiotou-Panayotou, M., Papanikolaou, S. Studies on the 

alcoholic fermentation of enriched grape musts by a newly isolated Saccharomyces cerevisiae 

strain: High production of bio-ethanol and fungicide removal. 2ο Πανελλήνιο Συνέδριο 

Βιοτεχνολογίας, 2007, pages 301-304. 
 

C. IMPACT FACTOR OF PUBLICATIONS (Google Scholar) 

 

Journal Year 
Impact 

Factor 

Number of 

Publications  

Total  

Impact 

Factor 

Citations Self-citations 

Engineering in 

Life Sciences 

2009, 2016, 

2017 
2.119 4 8.476 109 8 

Industrial Crops 

and Products 
2010, 2014 3.449 2 6.898 104 2 

Journal of  

Chemical 

Technology and 

Biotechnology 

2011, 2013 2.738 2 5.476 53 8 

Journal of 

Cleaner 

Production 

2016 4.959 1 4.959 2 0 

Journal of 

Biotechnology 
2014 2.667 1 2.667 23 2 

 
Grand Total 10 28.476 293 28 

 

h-index = 8 

 

i10-index = 8 
 

 

D. CITATIONS (Google Scholar - Total: 259; Self-citations: 20) 
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(2017). Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-

based media under aseptic and non-aseptic conditions. Eng Life Sci (In Press; DOI: 

10.1002/elsc.201600225). 

- 
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A., Papanikolaou, S. (2016). Rhodosporidium toruloides cultivated in NaCl‐enriched 

glucose‐based media: Adaptation dynamics and lipid production. Eng Life Sci. 

12. Yi, S., & Wan, Y. (2017). Separation performance of novel vinyltriethoxysilane (VTES)-g-

silicalite-1/PDMS/PAN thin-film composite membrane in the recovery of bioethanol from 

fermentation broths by pervaporation. Journal of Membrane Science, 524, 132-140. 

13. Zabed, H., Sahu, J., Boyce, A., & Faruq, G. (2016). Fuel ethanol production from lignocellulosic 

biomass: An overview on feedstocks and technological approaches. Renewable and Sustainable 

Energy Rev, 66, 751-774. 
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Ε. ABSTRACT OF PhD THESIS 

Biotechnological treatment of olive mill wastewaters-based media: production of added-value 

compounds with the use of strains of yeasts Yarrowia lipolytica and Saccharomyces cerevisiae. 

 

The ability of two yeast species, Yarrowia lipolytica [strains ACA-YC 5028, ACA-YC 5033 and 

W29 (ATCC 20460)] and Saccharomyces cerevisiae (strain MAK-1), to simultaneously bioremediate 

(reduce phenolic content and color) olive mill wastewater (OMW)-based media and produce (high-) 

added value products (yeast biomass, citric acid, ethanol, cellular lipids) was assessed at the present 

study, which is divided in four main parts: In the first part of this work, the ability of three Yarrowia 

lipolytica strains to grow on and convert glucose-enriched OMWs into microbial mass, cellular lipids and 

citric acid in aseptic shake-flask cultures was assessed. Decolorization (~63%) and removal of phenolic 

compounds (~34% w/w) occurred. In nitrogen-limited cultures citric acid in non-negligible quantities was 

produced [maximum citric acid (Citmax) ~18.1 g L−1; total citric acid yield on glucose consumed (YCit/Glc) 

~0.51 g g−1] but adaptation of cultures to media supplemented with OMWs reduced the final citric acid 

quantity and conversion yield values achieved. In contrast, the accumulation of cellular lipids was favored 

by OMWs addition compared to the control experiment (no OMWs addition). On the other hand, in 

carbon-limited cultures, insignificant amounts of citric acid were produced (as excpected) whereas, 

despite the presence of inhibitory compounds into the medium, biomass production [maximum biomass 

(Xmax) ~13.0 g L−1; dry cell weight yield on glucose consumed (YX/Glc) ~0.45 g g−1] was enhanced with 

the addition of OMWs into the synthetic medium, as compared with the control experiment (no OMW 

addition). Fatty acid analysis of total cellular lipids produced demonstrated that for all strains, cultures in 

media supplemented with OMWs favored the biosynthesis of cellular lipids that contained increased 

concentrations of cellular oleic acid. 

In the second part of this thesis, the ability of a selected Y. lipolytica strain that in the previous part 

had produced significant quantities of citric acid irrespective of the addition of OMWs into the medium, 

namely ACA-YC 5033, to grow on glucose-enriched OMWs was further studied. Higher quantities of 

OMWs as compared with the first part of the work were added, trials were also performed in pasteurized 

media (besides aseptic cultures), while equally batch bioreactor experiments were performed. 

Decolorization (~58%) and remarkable removal of phenolic compounds [up to 51% w/w, at the trial with 

initial phenolic compounds concentration (Ph0) ~5.50 g L-1] occurred. Such high value of phenolic 

compounds removal from the fermentation medium that occurred in the above-mentioned fermentation, 

was amongst the highest ones reported so far in the international literature concerning growth of yeasts on 

phenol-containing residues. In nitrogen-limited flask fermentations (in which Citmax~19.0 g L−1; 

YCit/Glc~0.74 g g−1), dry cell weight concentration was reduced proportionally to the phenolic content but 

the addition of OMWs, very interestingly, stimulated proportionally reserve lipid accumulation process 

[maximum total lipid (Lmax) ~1.0 g L−1; total lipid yield in biomass (YL/X) ~0.27 g g−1] comparing to 

control experiments, suggesting that OMWs seemed to be a “lipogenic” medium. The overall maximum 

total citric acid concentration achieved (Citmax~47.0 g L−1; YCit/Glc~0.67 g g−1) occurred in the trial with 

the highest commercial sugar supplementation of OMW-based media (initial glucose concentration, Glc0, 

~80.0 g L−1). On the other hand, cultures performed at high phenol content media (Ph0~4.50 and 5.50 g 

L−1) clearly inhibited the growth of the microorganism, but surprisingly enough lipid accumulation 

seemed to be stimulated by the addition of OMWs at these ratios. In carbon-limited fermentations, 

biomass production was enhanced by OMW addition. In the aspect of a potential scale-up of the 

technology and in order to reduce the cost of the proposed bioprocess, shake-flask and batch bioreactor 

experiments were performed in a previously pasteurized medium; comparing aseptic and pasteurized 

shake-flasks cultures, no significant differences were observed in kinetics (for both biomass and lipid 

production) while the assimilation rate of glucose (in g L-1 h-1) seemed to be linear for both experiments, 

with glucose consumption rate being higher in the aseptic than the in pasteurized cultures. On the contrary 

reduction of citric acid production was observed in the pasteurized trial by both means of Citmax and 

YCit/Glc values. Comparing aseptic shake-flask and the respective aseptic bioreactor fermentations of 

OMW-based media (that presented almost equal Glc0 and Ph0 concentrations), biomass and lipid 

production were insignificantly enhanced in bioreactor trials whereas the strain reached its kinetics 

plateau earlier in shake-flasks than in bioreactor cultures. Glucose consumption rate was higher in the 
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shake-flask cultures. Concerning citric acid production, it seemed to decrease in the bioreactor cultures 

(by both means of Citmax and YCit/Glc values).  

At the third part of the manuscript, the ability of Saccharomyces cerevisiae strain MAK-1 to grow 

on and convert glucose-enriched OMWs into biomass, cellular lipids and ethanol in aseptic and non-

aseptic shake-flask and batch bioreactor cultures was assessed. In general, aseptic and non-aseptic 

processes demonstrated similar kinetic results. Decolorization (∼63%) and phenol removal (∼34% w/w) 

from OMWs was achieved. In aseptic shake-flask cultures, enrichment with OMWs increased ethanol and 

biomass production. Batch-bioreactor trials performed showed higher ethanol [maximum ethanol 

concentration (EtOHmax) ~52.0 g L-1; ethanol yield on glucose (YEtOH/Glc) ~0.46 g g−1] and lower 

biomass quantities compared with the respective shake-flask experiments. Moreover, OMWs addition in 

batch-bioreactor trials significantly enhanced biomass production while it did not remarkably affect 

ethanol biosynthesis. Fatty acid analysis of cellular lipids demonstrated that in OMW-based media, 

cellular lipids contained increased concentrations of oleic and linoleic acid in accordance with the 

repective trials of the first part of this study when Y. lipolytica strains were used. 

At the fourth part of this thesis, the ability of Saccharomyces cerevisiae strain MAK-1 to grow on 

and convert blends of OMWs and molasses into biomass and ethanol under non-aseptic shake-flask and 

batch bioreactor cultures was assessed. OMWs were used as simultaneous substrate and process water of 

the fermentations employed and molasses were used as low-cost substrate to supplement already existing 

OMWs sugar content for the enhancement of added value compounds production. The rationale of the 

utilization of OMW and molasses blends was to study the effect of these mixtures of residues upon the 

physiological and kinetic behavior of the strain, since in a potential scale-up of the process, OMWs could 

be used as tap water substitute for molasses dilution. This is the first time in the international literature in 

which such types of blends are used in a fermentation process. Decolorization (~60%) and removal of 

phenolic compounds (~28% w/w) occurred. Under aerobic conditions in shake-flask cultures, adaptation 

of cultures to molasses media supplemented with OMWs did not significantly decrease ethanol and 

biomass production. Under similar aerobic bioreactor cultures biomass production (Xmax~5.7 g L-1; yield 

of dry cell weight per total sugars consumed (YX/TS) ~0.07 g g−1) was reduced whereas ethanol production 

(EtOHmax~42.0 g L-1; YEtOH/TS~0.49 g g−1) significantly increased as compared with the flask cultures. 

Comparing aerobic with anaerobic bioreactor experiments, biomass production showed some slight 

decrease whereas ethanol production slightly increased in the latter case.  

The yeast strains tested in this study could be regarded as possible candidates for simultaneous 

OMWs remediation and production of (added-) value compounds, in some cases under completely non-

aseptic conditions. 
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F. ABSTRACT OF MSc THESIS 

Studies on the alcoholic fermentation of enriched grape musts by the newly isolated Saccharomyces 

cerevisiae strain MAK 1: High production of ethanol and fungicide removal. 
 

With the continuous increase of the world’s population and the predominance of industrialization, 

the generation of energy deriving from various renewable or non-renewable resources is of significant 

importance. Utilization of various renewable bio-fuels, such as bioethanol, as energy sources has become 

of remarkable and with continuous growing significance. 

Ethanol as fuel is considered as one of the most important renewable energy due to its economic 

and environmental benefits. Therefore, the discovery of new naturally occurring or the “construction” of 

new “over-producing” strains, as well as the optimisation of ethanol production in various fermentation 

configurations in order to achieve high yields, final product concentrations and high volumetric 

productivities is of high importance in our days. 

Aim of the current investigation can be divided in two major points: to study the biochemical 

behaviour of a newly isolated and still not studied Saccharomyces cerevisiae strain MAK 1, as well as to 

assess the potentiality of the strain to remove the fungicide quinoxyfen, from the culture medium during 

fermentation. 

A non-sterilized, enriched red grape must with initial sugar concentration 240 ± 10 g/L was used 

as substrate. The concentrations of quinoxyfen in the mixtures were 0, 0.4 and 2.4 mg/L respectively. All 

fermentations were carried out in batch mode and aerated condition (agitated flasks). 

Significant uptake of sugars and quantities of biomass (xmax = 9.5 ± 1.0 g/L) were produced in all cases 

regardless of the addition of quinoxyfen. In addition, ethanol was synthesized in very high quantities 

(maximum concentrations ranging between 106.4 and 119.2 g/L, decreasing though when increasing the 

quinoxyfen concentration). 

No significant differences were observed in the production of glycerol, regardless the fungicide 

addition whilst no citric or no acetic acid were detected. 

It was observed a quinoxyfen residue removal (due to agitation) in both of the fungicide control 

experiments (0.4 mg/L and 2.4 mg/L) at about 20 % (w/w) and 36% (w/w) respectively. Moreover, 

removals of 79% (w/w), referring to the fermentation done. 
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G. ABSTRACT OF BSc THESIS 

Comparison of fast and classic aging of red wine Aghiorghitiko 
 

Aim of this thesis was the study of fast aging of a red wine with the use of oak wood chips and the 

comparison with classic aging in an oak cask. Regarding fast aging, oak wood chips of certain dimensions 

were used and toasted in three levels (light, medium, heavy) in three stainless steel tanks of known 

volume. The wood chips remained in contact with the wine for thirty two days during which, sampling 

took place. The samples (conditions of fast aging with wood chips, aging in casks and blank experiment) 

were analyzed in a GC apparatus via a solid phase micro-extraction (SPME) analysis protocol. The 

volatiles were taken from the sample head space. Research was focused on the study of furfural, guaiacol, 

oak lactone and eugenol, which are extracted from wood towards wine. 


